※This software pack includes a program and a key. Open eDUCT file in CD, click SETUP and follow the steps to finish installation. Then desktop will exist eDUCT execution file.

enhanced DUCT Design Software (eDUCT) Manual

\star To compute (total) pressure loss, duct size, fan horsepower, etc.
\star To verify Moody chart, Darcy equation and Colebrook equation, etc.
(A)Symbols:

FN: fitting No.
SN : serial No.
Q: flowrate(L/s)
V : velocity(m/s)
ε : absolute roughness(mm)
T : temperature $\left({ }^{\circ} \mathrm{Cdb}\right)$
RH: relative humidity(\%RH)
$\rho:$ density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
P_{v} : velocity pressure (Pa) $\Delta P_{\mathrm{L}}:$ friction $\operatorname{loss}(\mathrm{Pa} / \mathrm{m})$ D : duct diameter (mm)

```
\nu : kinematic viscosity(m2/s)
\varepsilon/D: relative roughness (-)
Re : Reynolds No. (-)
f: friction factor(-)
Cs:fitting loss coefficient(-)
H:given duct height(mm)
W: specified duct width(mm)
L: duct length(m)
Ras : aspect ratio(W/H\leqq5)
As:duct area (mm},=(H+W)\timesL\times2.03
De: equivalent diameter of rectangular duct(mm)
```

(B)Hints for $\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ and ε (mm):
(1)Standard air ($20^{\circ} \mathrm{C}$ \& $0 \% \mathrm{RH}$ or (ρ) $1.204 \mathrm{~kg} / \mathrm{m}^{3}$) is normally adopted for common HVAC ducts.
(2)common ε values : $\operatorname{PVC}(0.04)$, galvanized steel round (0.09), galvanized steel spiral(0.12), flexible aluminum, 100% extended(2.0)
(3)other ρ and ε values can be found by visiting public websites.
(C)Duct Diagram Example (※Refer to eDUCT Software in fig 2.)
(1)Number each straight duct, such as (1)(2)(3) \cdots. Mark each fitting, such as a b c \cdots.
(2)Usually the longest path (path \bar{A}) has the largest friction loss. However, sometimes the shorter branch path B may have larger loss depending on fitting's shape \& quantity..

(D)Common Use Fitting Loss Coefficients(Cs)(※approximate values)
\star The Cs values in ASHRAE Duct Fitting Database are preferred.

	1	2	3	4	5
	$\begin{aligned} & 45^{\circ} \\ & \text { elbow } \end{aligned}$	$\begin{aligned} & 90^{\circ} \\ & \text { elbow } \end{aligned}$	transition	rectangularround	$\begin{gathered} \text { double } 45^{\circ} \\ \text { elbow } \end{gathered}$
Symbol		end		$\sum W \rightarrow S D$	
Cs	$0.05 \sim 0.2(\fallingdotseq 0.13)$	0.1~0.35($\fallingdotseq 0.25)$	$0.1 \sim 0.3(\fallingdotseq 0.2)$	$0.1 \sim 0.35(\fallingdotseq 0.25)$	0.15~0.35($\fallingdotseq 0.2)$

	6	7	8	9	10
	$\begin{gathered} \text { wye } \\ \left(\leqq 30^{\circ} \quad\right) \end{gathered}$	double wye $\left(\leqq 30 \sim 45^{\circ}\right)$	2-way junction	Junction w / 2 splitters	dovetail
Symbol					
Cs(main)	$0.1 \sim 0.35(\fallingdotseq 0.25)$	$0.1 \sim 0.25(\fallingdotseq 0.15)$			
Cs(branch)	$0.2 \sim 0.7(\fallingdotseq 0.45)$	$0.1 \sim 0.25(\fallingdotseq 0.15)$			

($\fallingdotseq 0.00$) Cs can be used for general calculation.
(E)Operating Steps: (Refer to Computer Screen)
(1) fig 1: Select New Project or Existing file
(2) fig 2: Select one project and click OK
(3) fig 3:(1) Input Customer, Project and Date
(2) Must Inputs: Input $\mathrm{Q}, \mathrm{V}, ~ \varepsilon$ and $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ Defaults: $\varepsilon(0.09), \mathrm{T}(20)$ and $\mathrm{RH}(0.1 \%)$.
(3) Option Input: Input \%RH (cannot be 0.00%) or ρ. Defaults 0.01% RH and $\rho(1.204)$ can be changed.
(4) Remarks: Input fitting No. \& Straight duct No.

fig 2.
(6)If「Equal Friction Loss \lrcorner method is adopted, like this example, suppose target $\Delta \mathrm{PL}$ (column 8) is $1.00 \mathrm{~Pa} / \mathrm{m}$, try to input V value (Column 2) until (column 8) $\Delta \mathrm{PL} \fallingdotseq 1.00 \mathrm{~Pa} / \mathrm{m}$.
(7)Data in Column 11~13 can be used to verify Corebrook $\operatorname{Eq}(1 / \sqrt{f}=-2 \log [0.27(\varepsilon / \mathrm{D})+(2.51 / \mathrm{Re} / \sqrt{ } \mathrm{f})]$. (4) fig4: Input Cs, H, W and L; quick double click \mathbf{C}_{s} column and the default values(0.2, 350, 700 and 1.00) will be shown on screen. Default values can be changed. Let $\mathrm{H}=\mathrm{D}$ if round duct is used. Input duct width (column W) by "trial and error". For example, for SN1(Row 1), input a certain value at W column, such as $800(\mathrm{~mm})$ first and see if De (column $\mathbf{D e}$) is equal to D (column D). If it isn't, try another W value (900) until $\operatorname{De}(597) \fallingdotseq \mathrm{D}(592)$. H value is specified by designer. $\operatorname{As}\left(\mathrm{m}^{2}\right)$ is the required duct surface area. $\mathrm{As}\left(\mathrm{m}^{2}\right)=(\mathrm{H}+\mathrm{W}) * \mathrm{~L}^{*} 2.03 .3 \%$ is making-loss rate. ※Go back to fig 3 if you want to modify any data in Copied from Table 1 and Remarks.
fig 3.

fig 4.

(5) fig5:Complete the inputs in Table 3~Table 5, and SAVE first before PRINT1 or PRINT2.
(1)The calculated $\mathrm{Ptr}=644 \mathrm{~Pa}$ is total pressure loss. If you want to calculate static pressure loss (Ps), then $\operatorname{Ps}=\operatorname{Ptr}-\mathrm{Pv} @ A H U$ outlet $=645-57=588 \mathrm{~Pa}$ (see p6/6 Table 2 \& 4).
(2)Input fan total pressure (PT). $\mathrm{Ptr} \leqq \mathrm{PT} \leqq 1.05 \mathrm{Ptr}$ is recommended.
(3)Input fan static pressure (PS) value if Ps is used. $\mathrm{Psr} \leqq \mathrm{PS} \leqq 1.05 \mathrm{Psr}$ is recommended.
(4) Input θ fs (static pres. eff.) value if fan static pressure (PS) is used.
(5)Input concerned information in Table 5.
(6) Press SAVE first before Print out.
fig 5

Disclaimer:

We (Tempace, Inc. and developers) have done our best to avoid any errors. However, we do not warrant that the information in this software is error-free. The entire risk as to the quality and performance of this software is with you. In no event shall we be liable to you for any damages and losses, arising out of using this software.

TEMPACE, INC.
106 Dewei Street, Kaohsiung 81358, TAIWAN.
TEL : 886-7-557-1755
email: sales.tempace@msa.hinet.net
FAX: 886-7-557-2055 http://www.hvacnr.com.tw
PRINT 1
Table $1:$ Duct Basic Analysis Data (eDUCT)
Poject: U ser's Manuul Example,H H AC ssctem

Cast	mer. eD	Soitw					Project: User's Manual Example, HY AC system							Date: 202004406
Must Inpots					Option Input									Remarks
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SN	$\begin{aligned} & \mathrm{Q} \\ & \mathrm{~L} / \mathrm{s} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~m} / \mathrm{s} \end{gathered}$	$\begin{gathered} \mathrm{\varepsilon} \\ \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{T} \\ & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{RH} \\ & \% \\ & \hline \end{aligned}$	$\rho_{\mathrm{kg} / \mathrm{m} 3}^{\rho}$	$\begin{aligned} & \hline \mathrm{Pv} \\ & \mathrm{Pz} \\ & \hline \end{aligned}$	$\begin{aligned} & \triangle \mathrm{PL} \\ & \mathrm{~Pa} / \mathrm{m} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{D} \\ \mathrm{~mm} \end{gathered}$	$\underset{\mathrm{nin}^{\nu} / \mathrm{s}}{ }$	ε / D	Re	f	Noted by Designer FN \& SN refer to attached duct diagram
1	22000	8.00	0.090	20.0	0.1	1.204	38.5	1.016	592	0.00001508	0.000152	3139882	0.0156	retum grille-1 transition(a)
2	22000	8.00	0.090	20.0	0.1	1.204	38.5	1.016	592	0.00001508	0.000152	3139882	0.0156	allow (b), SN 1-2
3	220000	800	0.050	20.0	0.1	1.204	38.5	1.016	592	0.00001508	0.000152	3135882	0.0156	ellbow(c), $\mathrm{SN} 2-3$
4	44000	9.40	0.090	20.0	0.1	1.204	53.2	0.999	772	0.00001508	0.000117	481334.7	0.0145	transition(d), wye main(e), SN3-4
5	44000	9.40	0.090	20.0	0.1	1.204	53.2	0.999	772	0.00001508	0.000117	481334.7	0.0145	ellbow(4), SN4-5
6	440000	9.40	0.090	20.0	0.1	1.204	58.2	0.999	772	0.00001508	0.000117	481334.7	0.0145	ellbow(g), $\mathrm{SN} 5-5$
7	44000	9.40	0.090	20.0	0.1	1.204	53.2	0.999	772	0.00001508	0.000117	481334.7	0.0145	ellbow(h), SN6-7, transitioni), SN7-AHU
8	50000	9.70	0.090	20.0	0.1	1.204	56.6	1.001	810	0.00001508	0.000111	521228.1	0.0143	tramition(j), AHU-SN8
9	50000	9.70	0.090	20.0	0.1	1.204	56.6	1.001	810	0.00001508	0.000111	521228.1	0.0143	ellbow(k), SN8-9
10	50000	9.70	0.090	20.0	0.1	1.204	56.6	1.001	810	0.00001508	0.000111	521228.1	0.0143	ellbow(), SN9-10
11	25000	820	0.090	20.0	0.1	1.204	40.5	1.000	623	0.00001508	0.000144	3388705	0.0154	vye main(m) transition(4), \$N10-11
12	25000	820	0.090	20.0	0.1	1.204	40.5	1.000	623	0.00001508	0.000144	3389705	0.0154	ellbow(\%), SN (1-12a
13	20000	780	0.090	20.0	0.1	1.204	36.6	1.011	571	0.00001508	0.000158	295610.1	0.0158	vye amin(p), transition(q), SN 12a-13a
14	15000	730	0.090	20.0	0.1	1.204	32.1	1.02 L	511	0.00001508	0.000176	2476645	0.0163	vye main r$)$, transition(3) SN13a-14a
15	10000	6.60	0.090	20.0	0.1	1.204	26.2	1.018	439	0.00001508	0.000205	192277.7	0.0170	Wye main(\%) trnetion(u) SN14e-15
16	5000	550	0.090	20.0	0.1	1.204	18.2	0.992	340	0.00001508	0.000265	124114.7	0.0185	vye main(v), transtion(w), 8N 15a-16a
17	2500	3.74	2.000	20.0	0.1	1.204	8.4	1.003	292	0.00001508	0.006856	72370.7	0.0347	dovetail(X), rectangular-rowd (y), SN 16a-17a
18														fle \times iable dret ($E=2.0, \mathrm{D}=300$), sN 17a.diffuser
19														
20														
21														

[^0]RH: relative humidity(\% ORH $_{2}$)
$\mathrm{H}:$ known duc theight(omm)
De : eqnivalent diameter of rectangular duct As : duct souface area $\left(\mathrm{m}_{1}^{2},=(\mathrm{H}+\mathrm{W}) * \mathrm{~L} * 2.03\right)$
$\mathrm{PT}:$ fan total pressure. Pa$)$
Q: specificd flow rate (L/s)
De : eqnivalent diameter of rectangularduct $\quad \mathrm{As}:$ duct surface area $\left(\mathrm{m}_{1}^{2}=(\mathrm{H}+\mathrm{W}) * \mathrm{~L} * 2.03\right)$
$\mathrm{PT}:$ fan totul pressure. Pa$)$

PRINT 2

Table 2 : Duct Size \& Utmost Duct Pressure Loss (eDUCT)

	Copied From Table 1					Inputs				Outputs						Remarks
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SH	Q / s	V	$\left(\begin{array}{l} \mathrm{Pv} \\ \mathrm{~Pa} \end{array}\right.$	$\begin{array}{\|l\|} \triangle \mathrm{PL} \\ \mathrm{~Pa} / \mathrm{m} \end{array}$	$\underset{\mathrm{mm}}{\mathrm{D}}$	Cs	$\underset{\mathrm{mm}}{\mathrm{H}}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mm} \end{gathered}$	L	Ras W/H	$\begin{aligned} & \hline \mathrm{De} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{As} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \hline \mathrm{Pf} \\ & \mathrm{~Pa} \end{aligned}$	$\underset{\mathrm{Pm}}{\mathrm{Pm}}$	$\begin{aligned} & \hline \mathrm{Pt} \\ & \mathrm{~Pa} \end{aligned}$	Noted by Designer FN \& SN refer to attached duct diagram
1	22000	8.00	38.5	1.016	592	020	350	900	1.00	2.57	597	2.50	7.7	1.0	8.7	retum grille-1 transition(a)
2	22000	8.00	38.5	1.016	592	025	350	900	3.00	2.57	597	7.60	96	3.0	12.7	ellow (b), SN1-2
3	22000	8.00	38.5	1.016	592	025	350	900	12.00	2.57	597	30.50	96	12.2	21.8	ellbow(c), SN2-3
4	44000	9.40	53.2	0.999	772	0.45	400	1400	6.00	3.50	781	21.90	23.9	6.0	29.9	transition(d), wye main(e), SN 3-4
5	44000	9.40	53.2	0.999	772	025	400	1400	24.00	3.50	781	87.70	13.3	24.0	37.3	ellbow (4), SN-5
6	44000	9.40	53.2	0.999	772	025	400	1400	3.00	3.50	781	11.00	13.3	3.0	16.3	ellbow (g), SN 5-6
7	44000	9.40	53.2	0.999	772	0.45	400	1400	1.00	3.50	781	3.70	23.9	1.0	24.9	ellbow (h), SN6-7, transition(i), SN7-AHU
8	50000	9.70	56.6	1.001	810	020	450	1300	3.00	2.89	808	10.70	11.3	3.0	14.3	transition(1). AHU-SN8
9	50000	9.70	56.6	1.001	810	025	450	1300	6.00	2.89	808	21.30	14.2	6.0	20.2	ellbow (k), SN8-9
10	50000	9.70	56.6	1.001	810	025	450	1300	12.00	2.89	808	42.60	14.2	12.0	26.2	ellbow (1), SN9-10
11	25000	8.20	40.5	1.000	623	0.45	350	1000	12.00	2.86	626	32.90	18.2	12.0	30.2	wye main(m), transition(n), SN10-11
12	25000	8.20	40.5	1.000	623	025	350	1000	6.00	2.86	626	16.40	10.1	6.0	16.1	ellbow (0), SN 11-12a
13	20000	7.80	36.6	1.011	571	0.45	350	800	6.00	2.29	567	14.00	16.5	6.1	22.5	wye amin((p), transition($\mathrm{q}^{\text {c }}$, SN12a-13a
14	15000	7.30	32.1	1.021	511	0.45	300	800	6.00	2.67	520	13.40	14.4	6.1	20.6	wye main9r, transition(s), SN13a-14a
15	10000	6.60	26.2	1.018	439	0.45	300	550	6.00	1.83	439	10.40	11.8	6.1	17.9	wye main(t), tansition(u), SN14a-15a
16	5000	5.50	18.2	0.992	340	0.45	300	550	6.00	1.83	439	10.40	82	6.0	14.1	wye main(v), transition(w), SN 15a-16a
17	2500	3.74	8.4	1.003	292	050	275	270	3.00	0.98	298	3.30	42	3.0	7.2	dovetail(x), iectangular-ound(y), SN 16a-17a
18																flexiable duct ($\varepsilon=2.0, \mathrm{D}=300$), SN 17a-diffuser
19																
20																
21																
											Total	3403	224.4	116.5	340.9	

[^0]: Note 3: Symbols in Table 1 ~ Toble 5 :

 FN : fiting No. \quad SN : serialNa $\quad \mathrm{Q}:$ flowsate $(\mathrm{L} / \mathrm{s})$
 Re: Reymolds No. $(-)$
 Cs : section fitting loss codffic ient(-)
 E: absalute roughoss(mun) $\quad \mathrm{T}:$: temperature (${ }^{(C)}$
 $\mathrm{V}:$: velcrity $(\mathrm{m} / \mathrm{s})$
 $\mathrm{Pl}:$
 friction los $[\mathrm{Pa}$
 $\Delta \mathrm{Pl}:$ friction lossimim
 $f:$ friction factor $(-)$ $\theta b: b e l t$ eff. $\theta_{\mathrm{m}}:$ motoreff.

 PV : velocity pie sure (Pa)
 1D: relative moughess (-)
 Pf : fitting pressur loss($\mathrm{PS}:$ fon static pres. (Pa)

